May 20, 2025

Strike Force heroes4

Connecting the World with Advanced Technology

Incorporation of explainable artificial intelligence in ensemble machine learning-driven pancreatic cancer diagnosis

Incorporation of explainable artificial intelligence in ensemble machine learning-driven pancreatic cancer diagnosis
  • Walczak, S. & Velanovich, V. Improving prognosis and reducing decision regret for pancreatic cancer treatment using artificial neural networks. Decis. Support Syst. 106, 110–118 (2018).

    Article 

    Google Scholar 

  • Cancer Today. https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=1&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=0&include_nmsc_other=1.

  • Ghaneh, P., Costello, E. & Neoptolemos, J. P. Biology and management of pancreatic cancer. Postgrad. Med. J. 84, 478–497 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brand, R. E. et al. Imaging, diagnosis, prognosis serum biomarker panels for the detection of pancreatic cancer. Clin. Cancer Res. 17.

  • Chan, A., Diamandis, E. P. & Blasutig, I. M. Strategies for discovering novel pancreatic cancer biomarkers. J. Proteom. 81, 126–134 (2013).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Y. et al. Evaluation of urinary metal concentrations and sperm DNA damage in infertile men from an infertility clinic. Environ. Toxicol. Pharmacol. 45, 68–73 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Khomiak, A. et al. Recent discoveries of diagnostic, prognostic and predictive biomarkers for pancreatic cancer. Cancers 2020. 12, 3234 (2020).

    CAS 

    Google Scholar 

  • Pu, X., Sheng, S., Fu, Y., Yang, Y. & Xu, G. Construction of circRNA–miRNA–mRNA CeRNA regulatory network and screening of diagnostic targets for tuberculosis. Ann. Med. 56, 2416604 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, R., Luo, P., Guo, Y., He, Y. & Wang, C. Clinical features, treatment, and prognosis of SGLT2 inhibitors induced acute pancreatitis. Expert Opin. Drug Saf. (2024).

    Article 
    PubMed 

    Google Scholar 

  • Fang, W., Sun, W., Fang, W., Zhang, J. & Wang, C. Clinical features, treatment, and outcome of pembrolizumab-induced cholangitis. Naunyn Schmiedebergs Arch. Pharmacol. 397, 7905–7912 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, P., Guo, Y., He, Y. & Wang, C. Clinical characteristics, treatment and outcome of pembrolizumab-induced acute pancreatitis. Invest. New. Drugs. 42, 369–375 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balcioglu, O., Usanase, N., Uzun, B., Ozsahin, I. & Uzun Ozsahin, D. A comparative analysis of DOACs vs warfarin for venous thromboembolism treatment in renal insufficiency. Turkish J. Vascular Surg.. (2023).

    Article 

    Google Scholar 

  • Ozsahin, D. U., Usanase, N., Uzun, B., Ozsahin, I. & Balcioglu, O. The Efficacy and Safety of Direct Oral Anticoagulants for The Treatment of Venous Thrombosis in Cancer Using Fuzzy PROMETHEE. 2023 Advances in Science and Engineering Technology International Conferences (ASET) 1–5 (2023). https://doi.org/10.1109/ASET56582.2023.10180505

  • Usanase, N., Uzun, B., Ozsahin, D. U. & Ozsahin, I. A look at radiation detectors and their applications in medical imaging. Jpn J. Radiol. 1, 1–13 (2023).

    Google Scholar 

  • Ozsahin, I., Usanase, N., Uzun, B., Ozsahin, D. U. & Mustapha, M. T. A mathematical resolution in selecting suitable magnetic field-based breast cancer imaging modality: A comparative study on seven diagnostic techniques. Artif. Intell. Image Process. Med. Imaging. (2024).

    Article 

    Google Scholar 

  • Ozsahin, I. et al. BI-RADS-based classification of breast cancer mammogram dataset using six stand-alone machine learning algorithms. Artif. Intell. Image Process. Med. Imaging. (2024).

    Article 

    Google Scholar 

  • Uzun Ozsahin, D., Ikechukwu Emegano, D., Uzun, B. & Ozsahin, I. The systematic review of artificial intelligence applications in breast cancer diagnosis. Diagnostics 2023. 13, 45 (2022).

    Google Scholar 

  • Mahawan, T., Luckett, T., Mielgo Iza, A. & Pornputtapong, N. Caamaño Gutiérrez, E. Robust and consistent biomarker candidates identification by a machine learning approach applied to pancreatic ductal adenocarcinoma metastasis. BMC Med. Inf. Decis. Mak. 24, 1–16 (2024).

    Google Scholar 

  • Pu, X. et al. Diagnostic plasma small extracellular vesicles MiRNA signatures for pancreatic cancer using machine learning methods. Transl Oncol. 40, (2024).

  • Construction of Classifier Based on MPCA and QSA and Its Application on Classification of Pancreatic Diseases. https://www.hindawi.com/journals/cmmm/2013/713174/

  • Dang, C., Bian, Q., Wang, F., Wang, H. & Liang, Z. Machine learning identifies SLC6A14 as a novel biomarker promoting the proliferation and metastasis of pancreatic cancer via Wnt/β-catenin signaling. Scientific Reports 2024 14:1 14, 1–21 (2024).

  • Huang, B., Xin, C., Yan, H. & Yu, Z. A machine learning method for a blood diagnostic model of pancreatic cancer based on MicroRNA signatures. Crit. Rev. Immunol. 44, 13–23 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Kaya, M. & Bilge, H. Ş. Classification of pancreas tumor dataset using adaptive weighted K nearest neighbor algorithm. INISTA 2014 – IEEE Int. Symp. Innovations Intell. Syst. Appl. Proc. 253–257 (2014).

  • Hayward, J. et al. Machine learning of clinical performance in a pancreatic cancer database. Artif. Intell. Med. 49, 187–195 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Alaca, Y. Machine learning via DARTS-Optimized mobilevit models for pancreatic cancer diagnosis with graph-based deep learning. BMC Med. Inf. Decis. Mak. 25, 81 (2025).

    Article 

    Google Scholar 

  • Bakasa, W., Kwenda, C. & Viriri, S. Hybrid deep learning model for pancreatic cancer image segmentation. 14–24 (2025). https://doi.org/10.1007/978-3-031-73483-0_2

  • Li, S., Jiang, H., Wang, Z., Zhang, G. & Yao Dong, Y. An effective computer-aided diagnosis model for pancreas cancer on PET/CT images. Comput. Methods Programs Biomed. 165, 205–214 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Mikdadi, D. et al. Applications of artificial intelligence (AI) in ovarian cancer, pancreatic cancer, and image biomarker discovery. Cancer Biomarkers vol. 33 173–184 Preprint at (2022). https://doi.org/10.3233/CBM-210301

  • Acer, İ., Orhanbulucu, F., Içer, S. & Latifoglu, F. Early diagnosis of pancreatic cancer by machine learning methods using urine biomarker combinations. Turkish J. Electr. Eng. Comput. Sci. 31, 112–125 (2023).

    Article 

    Google Scholar 

  • Severeyn, E., La Cruz, A., Velásquez, J. & Huerta, M. Early Diagnosis of Pancreatic Cancer using Urinary Biomarkers and Machine Learning. ETCM 2024–8th Ecuador Technical Chapters Meeting (2024). https://doi.org/10.1109/ETCM63562.2024.10746008

  • Ghosh, S., Swetapadma, A., Nayak, S. S. & Sahoo, B. Machine Learning-Based analysis for detection of pancreatic adenocarcinoma using urinary biomarkers. Adv. Healthc. Through Data-driven Innovations. (2024).

    Article 

    Google Scholar 

  • Kumar, K. P. & Gayathri, A. An effective way to detect urinary biomarkers for pancreatic cancer using a random forest algorithm with enhanced accuracy compared to the XGBoost algorithm. AIP Conf. Proc. 3252, 020029 (2025).

    Article 

    Google Scholar 

  • Debernardi, S. et al. A combination of urinary biomarker panel and pancrisk score for earlier detection of pancreatic cancer: A case-control study. PLoS Med. 17, e1003489 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S., Hu, Z., Ye, L. & Zheng, Y. Application of logistic regression and decision tree analysis in prediction of acute myocardial infarction events. Zhejiang Da Xue Xue Bao Yi Xue Ban. 48, 594–602 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, Y., Klein, B., Li, G. & Gopaluni, B. Evaluation of logistic regression and support vector machine approaches for XRF-based particle sorting for a copper ore. Min. Eng. 192, 108003 (2023).

    Article 
    CAS 

    Google Scholar 

  • Schonlau, M. & Zou, R. Y. The random forest algorithm for statistical learning. Stata J. 20, 3–29 (2020).

    Article 

    Google Scholar 

  • Supervised Machine Learning Algorithms. Classification and Comparison. https://www.ijcttjournal.org/archives/ijctt-v48p126

  • Sailasya, G. & Kumari, G. L. A. Analyzing the performance of stroke prediction using ML classification algorithms. Int. J. Adv. Comput. Sci. Appl. 12, 539–545 (2021).

    Google Scholar 

  • Verma, G. & Sahu, T. P. A correlation-based feature weighting filter for multi-label Naive Bayes. Int. J. Inform. Technol. (Singapore). 16, 611–619 (2024).

    Google Scholar 

  • Fadlil, A., Riadi, I. & Purwadi Putra, I. J. D. E. Comparison of machine learning performance using Naive Bayes and random forest methods to classify Batik fabric patterns. Revue d’Intelligence Artificielle. 37, 379–385 (2023).

    Article 

    Google Scholar 

  • Kavya, R., Christopher, J., Panda, S. & Lazarus, Y. B. Machine learning and XAI approaches for allergy diagnosis. Biomed. Signal. Process. Control. 69, 102681 (2021).

    Article 

    Google Scholar 

  • Shapley, L. 7. A Value for n-Person Games. Contributions to the Theory of Games II 307–317. Classics in Game Theory 69–79 (2021) (1953). https://doi.org/10.1515/9781400829156-012/PDF

  • Yagin, F. H. et al. Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Comput. Biol. Med. 154, 106619 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Messalas, A., Kanellopoulos, Y. & Makris, C. Model-Agnostic interpretability with Shapley values. 10th Int. Conf. Inform. Intell. Syst. Appl. IISA 2019. (2019).

    Article 

    Google Scholar 

  • Ramachandra, H. V., Chavan, P., Ali, A. & Ramaprasad, H. C. Ensemble Machine Learning Techniques for Pancreatic Cancer Detection. International Conference on Applied Intelligence and Sustainable Computing, ICAISC 2023 (2023). https://doi.org/10.1109/ICAISC58445.2023.10200380

  • Nené, N. R. et al. Serum biomarker-based early detection of pancreatic ductal adenocarcinomas with ensemble learning. Communications Medicine 2023 3:1 3, 1–14 (2023).

  • Reddy, P. S. & Chandrasekar, M. P. A. D. A pancreatic cancer detection based on extracted medical data through ensemble methods in machine learning. Int. J. Adv. Comput. Sci. Appl. 13, 149–156 (2022).

    Google Scholar 

  • Bakasa, W. & Viriri, S. VGG16 feature extractor with extreme gradient boost classifier for pancreas cancer prediction. J. Imaging 2023. 9, 138 (2023).

    Google Scholar 

  • Yadav, K. et al. Early Detection of Pancreatic Cancer Using Ensemble Learning with Medical Imaging. 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, UPCON 2023 1846–1852 (2023) (2023). https://doi.org/10.1109/UPCON59197.2023.10434602

  • Lee, H. A., Chen, K. W. & Hsu, C. Y. Prediction model for pancreatic Cancer—A Population-Based study from NHIRD. Cancers 2022. 14, 882 (2022).

    Google Scholar 

  • Li, J. et al. XGBoost classifier based on computed tomography radiomics for prediction of Tumor-Infiltrating CD8 + T-Cells in patients with pancreatic ductal adenocarcinoma. Front. Oncol. 11, 671333 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • ALPU, Ö. & PEKDEMİR, G. The classification capability of urine biomarkers in the diagnosis of pancreatic cancer with logistic regression based on regularized approaches: A methodological research. Turkiye Klinikleri J. Biostatistics. 14, 118–128 (2022).

    Article 

    Google Scholar 

  • Laxminarayanamma, K., Krishnaiah, R. V. & Sammulal, P. Enhanced CNN model for pancreatic ductal adenocarcinoma classification based on proteomic data. Ingenierie Des. Systemes d’Information. 27, 127–133 (2022).

    Google Scholar 

  • Blyuss, O. et al. Development of pancrisk, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients. Br. J. Cancer. 122, 692–696 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gerdtsson, A. S. et al. Plasma protein profiling in a stage defined pancreatic cancer cohort – Implications for early diagnosis. Mol. Oncol. 10, 1305–1316 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwatate, Y. et al. Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer. British Journal of Cancer 2020 123:8 123, 1253–1261 (2020).

  • Gress, T. M. et al. Combined MicroRNA and mRNA microfluidic TaqMan array cards for the diagnosis of malignancy of multiple types of pancreaticobiliary tumors in fine-needle aspiration material. Oncotarget 8, 108223–108237 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, W. et al. Derivation and external validation of machine Learning-Based model for detection of pancreatic cancer. Am. J. Gastroenterol. 118, 157–167 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, W. et al. Risk prediction of pancreatic cancer in patients with Recent-onset hyperglycemia: A Machine-learning approach. J. Clin. Gastroenterol. 57, 103–110 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malhotra, A., Rachet, B., Bonaventure, A., Pereira, S. P. & Woods, L. M. Can we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data. PLoS One. 16, e0251876 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shelly, M. & Sivakumar, S. Enhancing pancreatic cancer diagnostics: Ensemble-based model for automated urine biomarker classification. Comput. Biol. Med. 189, 109997 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hegde, S. K., Hegde, R., Murugan, T. & XGSVM Based Ensemble Machine Learning Model For The Early Prediction of Pancreatic Cancer. 2nd IEEE International Conference on Networks, Multimedia and Information Technology, NMITCON 2024 (2024). https://doi.org/10.1109/NMITCON62075.2024.10699092

  • Ganie, S. M. & Malik, M. B. An ensemble machine learning approach for predicting Type-II diabetes mellitus based on lifestyle indicators. Healthc. Analytics. 2, 100092 (2022).

    Article 

    Google Scholar 

  • Naderalvojoud, B. & Hernandez-Boussard, T. Improving machine learning with ensemble learning on observational healthcare data. AMIA Annual Symposium Proceedings 521 (2024). (2023).

  • Baba, S. et al. A noninvasive urinary microRNA-based assay for the detection of pancreatic cancer from early to late stages: a case-control study. EClinicalMedicine 78, 102936 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, H. Y. & Mukherjee, I. A. Novel neural network to predict locally advanced pancreatic cancer using 4 urinary biomarkers: REG1A/1B, LYVE1, and TFF1. J. Am. Coll. Surg. 235, S144–S145 (2022).

    Article 

    Google Scholar 

  • Karar, M. E., El-Fishawy, N. & Radad, M. Automated classification of urine biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks. J. Biol. Eng. 17, 1–12 (2023).

    Article 

    Google Scholar 

  • Sun, J., Sun, C. K., Tang, Y. X., Liu, T. C. & Lu, C. J. Application of SHAP for explainable machine learning on Age-Based subgrouping mammography questionnaire data for positive mammography prediction and risk factor identification. Healthc. 2023. 11, 2000 (2023).

    Google Scholar 

  • Książek, W. Explainable thyroid cancer diagnosis through Two-Level machine learning optimization with an improved naked Mole-Rat algorithm. Cancers (Basel). 16, 4128 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Alabi, R. O., Elmusrati, M., Leivo, I., Almangush, A. & Mäkitie, A. A. Machine learning explainability in nasopharyngeal cancer survival using LIME and SHAP. Scientific Reports 2023 13:1 13, 1–14 (2023).

  • Zhen, J. et al. Development and validation of machine learning models for young-onset colorectal cancer risk stratification. Npj Precision Oncol. 2024. 8:1 8, 1–14 (2024).

    Google Scholar 

  • link

    Copyright © All rights reserved. | Newsphere by AF themes.