February 11, 2025

Strike Force heroes4

Connecting the World with Advanced Technology

Challenges and applications of artificial intelligence in infectious diseases and antimicrobial resistance

Challenges and applications of artificial intelligence in infectious diseases and antimicrobial resistance
  • Wong, F. et al. Leveraging artificial intelligence in the fight against infectious diseases. Science 381, 164–170 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cesaro, A. et al. Deep learning tools to accelerate antibiotic discovery. Expert Opin. Drug Discov. (2023).

  • Porto, W. F. et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat. Commun. 9, 1490 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350, (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702.e13 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Naghavi, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226, (2024).

    Article 

    Google Scholar 

  • Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article 
    CAS 

    Google Scholar 

  • de la Fuente-Nunez, C. et al. Antibiotic failure: Beyond antimicrobial resistance. Drug Resistance Updates 71, 101012 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Haney, E. F. et al. Addressing Antibiotic Failure—Beyond Genetically Encoded Antimicrobial Resistance. Front. Drug Discov. 2, (2022).

  • Liu, G.-Y. et al. Antimicrobial resistance crisis: could artificial intelligence be the solution? Mil. Med Res 11, 7 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ross, J. et al. Large-scale chemical language representations capture molecular structure and properties. Nat. Mach. Intell. 4, 1256–1264 (2022).

    Article 

    Google Scholar 

  • Ferruz, N. et al. Anniversary AI reflections. Nat. Mach. Intell. 6, 6–12 (2024).

    Article 

    Google Scholar 

  • Safi, Z. et al. Technical aspects of developing chatbots for medical applications: scoping review. J. Med. Internet Res 22, e19127 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miner, A. S. et al. Chatbots in the fight against the COVID-19 pandemic. NPJ Digit. Med. 3, 65 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orsi, M. et al. Can large language models predict antimicrobial peptide activity and toxicity? RSC Med. Chem. 15, 2030–2036 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, K. P. et al. Applications of artificial intelligence in clinical microbiology diagnostic. Test. Clin. Microbiol Newsl. 42, 61–70 (2020).

    Article 

    Google Scholar 

  • Su, M.-H. et al. A chatbot using LSTM-based multi-layer embedding for elderly care. in 2017 International Conference on Orange Technologies (ICOT) 70–74 (IEEE, 2017). https://doi.org/10.1109/ICOT.2017.8336091.

  • Abashev, A. et al. Programming tools for messenger-based chatbot system organization: implication for outpatient and translational medicines. Bionanoscience 7, 403–407 (2017).

    Article 

    Google Scholar 

  • Orsi, M. et al. Using machine learning to predict the antibacterial activity of ruthenium complexes**. Angewandte Chemie International Edition 63, e202317901 (2024).

  • Swanson, K. et al. Generative AI for designing and validating easily synthesizable and structurally novel antibiotics. Nat. Mach. Intell. 6, 338–353 (2024).

    Article 

    Google Scholar 

  • Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature (2023).

  • Wan, F. et al. Deep-learning-enabled antibiotic discovery through molecular de-extinction. Nat. Biomed. Eng. (2024).

  • Wan, F. et al. Machine learning for antimicrobial peptide identification and design. Nat. Rev. Bioeng. (2024).

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhou, J. et al. Predicting effects of noncoding variants with deep learning–based sequence model. Nat. Methods 12, 931–934 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1, 18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. (2022).

  • Hutchings, M. I. et al. Antibiotics: past, present and future. Curr. Opin. Microbiol 51, 72–80 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Schlander, M. et al. How much does it cost to research and develop a new drug? A systematic review and assessment. Pharmacoeconomics 39, 1243–1269 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • What is Sepsis? (2022).

  • Silva, B. N. et al. De-escalation of antimicrobial treatment for adults with sepsis, severe sepsis or septic shock. Cochrane Database Syst. Rev. 2018, CD007934, (2013).

    Article 

    Google Scholar 

  • Alowais, S. A. et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med. Educ. 23, 689 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabaan, A. A. et al. Application of artificial intelligence in combating high antimicrobial resistance rates. Antibiotics 11, 784 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Van Steenkiste, T. et al. Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks. Artif. Intell. Med. 97, 38–43 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Litsa, E. E. et al. An end-to-end deep learning framework for translating mass spectra to de-novo molecules. Commun. Chem. 6, 132 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, K. P. et al. Automated interpretation of blood culture gram stains by use of a deep convolutional neural network. J. Clin. Microbiol. 56, e01521–17 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zagajewski, A. et al. Deep learning and single-cell phenotyping for rapid antimicrobial susceptibility detection in Escherichia coli. Commun. Biol. 6, 1164 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mather, C. A. et al. Rapid detection of vancomycin-intermediate staphylococcus aureus by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol. 54, 883–890 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wang, H.-Y. et al. Rapid detection of heterogeneous vancomycin-intermediate staphylococcus aureus based on matrix-assisted laser desorption ionization time-of-flight: using a machine learning approach and unbiased validation. Front. Microbiol. 9, 2393 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weis, C. et al. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nat. Med. 28, 164–174 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ali, T. et al. Artificial intelligence for antimicrobial resistance prediction: challenges and opportunities towards practical implementation. Antibiotics 12, 523 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, M. et al. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J. Clin. Microbiol 57, e01260–18, (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Teng, Q. et al. A survey on the interpretability of deep learning in medical diagnosis. Multimed. Syst. 28, 2335–2355 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hakkoum, H. et al. Interpretability in the medical field: A systematic mapping and review study. Appl Soft Comput 117, 108391 (2022).

    Article 

    Google Scholar 

  • Drouin, A. et al. Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC Genomics 17, 754 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez-Agüero, S. et al. Interpretable clinical time-series modeling with intelligent feature selection for early prediction of antimicrobial multidrug resistance. Future Gener. Computer Syst. 133, 68–83 (2022).

    Article 

    Google Scholar 

  • Lundberg, S. et al. A Unified Approach to Interpreting Model Predictions. arXiv preprint arXiv:1705.07874 (2017).

  • Giacobbe, D. R. et al. Explainable and Interpretable Machine Learning for Antimicrobial Stewardship: Opportunities and Challenges. Clin. Ther. 46, 474–480 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Anahtar, M. N. et al. Applications of machine learning to the problem of antimicrobial resistance: an emerging model for translational research. J. Clin. Microbiol. 59, e0126020 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kanjilal, S. et al. A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated urinary tract infection. Sci. Transl. Med. 12, eaay5067 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yelin, I. et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat. Med. 25, 1143–1152 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Clark M. et al. Chatbots in Health Care: Connecting Patients to Information: Emerging Health Technologies. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health (2024).

  • Vijayan, A. et al. A Framework for Intelligent Learning Assistant Platform Based on Cognitive Computing for Children with Autism Spectrum Disorder. in 2018 International CET Conference on Control, Communication, and Computing (IC4) 361–365 (IEEE, 2018). https://doi.org/10.1109/CETIC4.2018.8530940.

  • Morris, R. R. et al. Towards an artificially empathic conversational agent for mental health applications: System design and user perceptions. J. Med Internet Res 20, e10148 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kadariya, D. et al. kBot: Knowledge-Enabled Personalized Chatbot for Asthma Self-Management. in 2019 IEEE International Conference on Smart Computing (SMARTCOMP) 138–143 (IEEE, 2019). https://doi.org/10.1109/SMARTCOMP.2019.00043.

  • Aljameel, S. S. et al. Development of an Arabic Conversational Intelligent Tutoring System for Education of children with ASD. in 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) 24–29 (IEEE, 2017). https://doi.org/10.1109/CIVEMSA.2017.7995296.

  • Martínez-Miranda, J. et al. Assessment of users’ acceptability of a mobile-based embodied conversational agent for the prevention and detection of suicidal behaviour. J. Med Syst. 43, 246 (2019).

    Article 
    PubMed 

    Google Scholar 

  • What have we done so far? Centers for Disease Control and Prevention, Office of Public Health Data, Surveillance, and Technology (2024). Last Reviewed: April 23, 2024. https://archive.cdc.gov/www_cdc_gov/surveillance/data-modernization/basics/what-have-we-done-so-far.html.

  • Naik, N. et al. Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility? Front Surg. 9, 862322 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghanem, M. et al. Artificial intelligence and personalized medicine: transforming patient care. in The New Era of Precision Medicine 131–142 (Elsevier, 2024). https://doi.org/10.1016/B978-0-443-13963-5.00012-1.

  • Bouderhem, R. Shaping the future of AI in healthcare through ethics and governance. Humanit Soc. Sci. Commun. 11, 416 (2024).

    Article 

    Google Scholar 

  • Ueda, D. et al. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J. Radio. 42, 3–15 (2024).

    Article 

    Google Scholar 

  • Rehman, A. U. et al. Role of artificial intelligence in revolutionizing drug discovery. Fundamental Res. (2024).

  • Chenthamarakshan, V. et al. Accelerating drug target inhibitor discovery with a deep generative foundation model. Sci. Adv. 9, eadg7865 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Grisoni, F. et al. Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Sci. Adv. 7, eabg3338 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Merk, D. et al. De novo design of bioactive small molecules by artificial intelligence. Mol. Inf. 37, 1700153 (2018).

    Article 

    Google Scholar 

  • Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Das, P. et al. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat. Biomed. Eng. 5, 613–623 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cesaro, A. et al. Advanced delivery systems for peptide antibiotics. Adv. Drug Del. Rev. (2023).

  • Miethke, M. et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 5, 726–749 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, J. et al. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci. 11, 73 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cesaro, A. et al. Synthetic antibiotic derived from sequences encrypted in a protein from human plasma. ACS Nano 16, 1880–1895 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shatri G. et al. Polymyxin. StatPearls (2024).

  • Nguyen R. et al. Bacitracin Topical. StatPearls (2024).

  • Hansch, C. et al. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature 194, 178–180 (1962).

    Article 
    CAS 

    Google Scholar 

  • Huang, J. et al. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences. Nat. Biomed. Eng. 7, 797–810 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Santos-Júnior, C. D. et al. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 187, 3761–3778.e16, (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Capecchi, A. et al. Machine learning designs non-hemolytic antimicrobial peptides. Chem. Sci. 12, 9221–9232 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Torkamannia, A. et al. A review of machine learning approaches for drug synergy prediction in cancer. Brief. Bioinform. (2022).

  • Mayr, A. et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9, 5441–5451 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bhadra, P. et al. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci. Rep. 8, 1697 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Krenn, M. et al. Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. Mach. Learn Sci. Technol. 1, 045024 (2020).

    Article 

    Google Scholar 

  • Schütt, K. T. et al. SchNet – A deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ma, Y. et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat. Biotechnol. 40, 921–931 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jin, W. et al. Multi-Objective Molecule Generation using Interpretable Substructures. in 37th International Conference on Machine Learning, ICML 2020 vols PartF168147-7 (2020).

  • Torres, M. D. T. et al. Mining for encrypted peptide antibiotics in the human proteome. Nat. Biomed. Eng. 6, 1451–1451 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Torres, M. D. T. et al. Mining human microbiomes reveals an untapped source of peptide antibiotics. Cell, press 187, 5453–5467.e15 (2024).

    CAS 

    Google Scholar 

  • Maasch, J. R. M. A. et al. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Cell Host Microbe 31, 1260–1274.e6 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cesaro, A. et al. Antibiotic identified by AI. Nat. Chem. Biol. 19, 1296–1298 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sterling, T. et al. ZINC 15 – Ligand discovery for everyone. J. Chem. Inf. Model 55, 2324–2337 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bateman, A. et al. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res 51, D523–D531 (2023).

    Article 
    CAS 

    Google Scholar 

  • Polykovskiy, D. et al. Molecular Sets (MOSES): A benchmarking platform for molecular generation models. Front Pharm. 11, 565644 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jin, W. et al. Chapter 11: Junction Tree Variational Autoencoder for Molecular Graph Generation. in RSC Drug Discovery Series vols 2021-January (2021).

  • Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gebauer, N. W. A. et al. Symmetry-adapted generation of 3D point sets for the targeted discovery of molecules. in Advances in Neural Information Processing Systems 32 arXiv preprint arXiv:1906.00957 (2019).

  • Jerret R. et al. GP-MoLFormer: A Foundation Model For Molecular Generation. (2024).

  • Sheth, A. et al. Transforming Big Data into Smart Data: Deriving Value via Harnessing Volume, Variety & Velocity Using Semantics and Semantic Web. IEEE Internet Computing 3 (2007).

  • Irwin, R. et al. Chemformer: a pre-trained transformer for computational chemistry. Mach. Learn Sci. Technol. 3, 015022 (2022).

    Article 

    Google Scholar 

  • Xie, Y. et al. MARS: MARKOV MOLECULAR SAMPLING FOR MULTI-OBJECTIVE DRUG DISCOVERY. in ICLR 2021 – 9th International Conference on Learning Representations (2021).

  • Guimaraes, G. L. et al. Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models. (2017).

  • Zhou, Z. et al. Optimization of molecules via deep reinforcement learning. Sci. Rep. 9, 10752 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • You, J. et al. Graph convolutional policy network for goal-directed molecular graph generation. in Advances in Neural Information Processing Systems vols 2018-December (2018).

  • Yoshida, M. et al. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial. Pept. Chem. 4, 533–543 (2018).

    CAS 

    Google Scholar 

  • Maragakis, P. et al. A deep-learning view of chemical space designed to facilitate drug discovery. J. Chem. Inf. Model 60, 4487–4496 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jin, W. et al. Learning multimodal graph-to-graph translation for molecular optimization. in 7th International Conference on Learning Representations, ICLR 2019 (2019).

  • Chen, C. H. et al. Simulation-guided rational de novo design of a small pore-forming antimicrobial Peptide. J. Am. Chem. Soc. 141, 4839–4848 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhu, Y. et al. Deciphering the coevolutionary dynamics of L2 β-Lactamases via Deep Learning. J. Chem. Inf. Model 64, 3706–3717 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • de la Fuente-Nunez, C. AI in infectious diseases: The role of datasets. Drug Resistance Updates 73, 101067 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Medina-Franco, J. L. et al. Bridging informatics and medicinal inorganic chemistry: Toward a database of metallodrugs and metallodrug candidates. Drug Discov. Today 27, 1420–1430 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Frei, A. et al. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 7, 202–224 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Arora, A. et al. The value of standards for health datasets in artificial intelligence-based applications. Nat. Med 29, 2929–2938 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • link

    Copyright © All rights reserved. | Newsphere by AF themes.